If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+18x=99
We move all terms to the left:
x^2+18x-(99)=0
a = 1; b = 18; c = -99;
Δ = b2-4ac
Δ = 182-4·1·(-99)
Δ = 720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{720}=\sqrt{144*5}=\sqrt{144}*\sqrt{5}=12\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-12\sqrt{5}}{2*1}=\frac{-18-12\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+12\sqrt{5}}{2*1}=\frac{-18+12\sqrt{5}}{2} $
| 10x+-7x-29=-53 | | (m-6)=35 | | 5x-7=42* | | )5x-7=42* | | 3x+2=5x–8 | | 0=4x^2-0.63x | | 50= 50−10a | | 6(x2)=108 | | x-x/7=-2 | | X+0.05x=24 | | (4x-1)^3=27^2 | | 12x+12=1.5x^2 | | 12x=1.5x^2 | | 5a+3=29+9 | | 9-19+x=-10 | | x3+1=5x3+1=5 | | -4t=0 | | -3/4x-1/2=-2/7x-1/3 | | 5÷2p=-20 | | x*2.5x=11 | | 3t=22t | | 4x²+4x-12=0 | | 3t+8=3t+8 | | 5^x-0,2^x=4.8 | | 15x–7=28–9x | | 17x+1=35x= | | 2m×5=25 | | 19=4+5c | | 3x+3x+4=19+x | | 13.5=y3= | | 82=4+x | | 65-x=33 |